Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1065-1075, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658149

RESUMO

Autophagy plays an essential role in recycling/re-utilizing nutrients and in adaptions to numerous stresses. However, the roles of autophagy in soybean have not been investigated extensively. In this study, a virus-induced gene silencing approach mediated by bean pod mottle virus (BPMV) was used to silence autophagy-related gene 5 (ATG5) genes in soybean (referred to as GmATG5). Our results showed that ATG8 proteins were massively accumulated in the dark-treated leaves of the GmATG5-silenced plants relative to the vector control plants (BPMV-0), indicating that autophagy pathway is impaired in the GmATG5-silenced plants. Consistent with the impaired autophagy, an accelerated senescence phenotype was observed on the leaves of the dark-treated GmATG5-silenced plants, which was not shown on the leaves of the dark-treated BPMV-0 plants. In addition, the accumulation levels of both reactive oxygen species (ROS) and salicylic acid (SA) were significantly induced in the GmATG5-silenced plants compared with that of the vector control plants (BPMV-0), indicating an activated immunity. Accordingly, the GmATG5-silenced plants exhibited significantly enhanced resistance against Pseudomonas syringae pv. glycinea (Psg) in comparison with the BPMV-0 plants. Nevertheless, the activated immunity observed in the GmATG5-silenced plant was independent of the activation of mitogen-activated protein kinase (MAPK).


Assuntos
Autofagia , Comovirus , Resistência à Doença , Inativação Gênica , Soja , Doenças das Plantas , Soja/genética , Soja/microbiologia , Soja/imunologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Autofagia/genética , Comovirus/genética , Senescência Vegetal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Plantas Geneticamente Modificadas/genética
2.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1050-1064, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658148

RESUMO

Heterotrimeric GTP-binding protein (G-proteins) complex, which consists of Gα, Gß and Gγ subunits, plays critical roles in defense signaling. Arabidopsis genome contains only a single Gß-encoding gene, AGB1. Loss function of AGB1 in Arabidopsis results in enhanced susceptibility to a wide range of pathogens. However, the function of soybean AGB1 in immunity has not been previously interrogated. Bioinformatic analysis indicated that there are four GmAGB1 homologous genes in soybean genome, sharing homology of 86%-97%. To overcome the functional redundancy of these GmAGB1 homologs, virus-induced gene silencing (VIGS) mediated by the bean pod mottle virus (BPMV) was used to silence these four genes simultaneously. As expected, these four GmAGB1 homologous genes were indeed silenced by a single BPMV-VIGS vector carrying a conserved fragments among these four genes. A dwarfed phenotype was observed in GmAGB1s-silenced soybean plants, suggesting that GmAGB1s play a crucial role in growth and development. Disease resistance analysis indicated that silencing GmAGB1s significantly compromised the resistance of soybean plants against Xanthomonas campestris pv. glycinea (Xag). This reduced resistance was correlated with the decreased accumulation of pathogen-induced reactive oxygen species (ROS) and the reduced activation of GmMPK3 in response to flg22, a conserved N-terminal peptide of flagellin protein. These results indicate that GmAGB1 functions as a positive regulator in disease resistance and GmAGB1 is indispensable for the ROS production and GmMPK3 activation induced by pathogen infection. Yeast two hybrid assay showed that GmAGB1 interacted with GmAGG1, suggesting that an evolutionary conserved heterotrimeric G protein complex similarly functions in soybean.


Assuntos
Resistência à Doença , Inativação Gênica , Soja , Doenças das Plantas , Soja/genética , Soja/imunologia , Soja/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Comovirus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Regulação da Expressão Gênica de Plantas , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/imunologia , Xanthomonas , Espécies Reativas de Oxigênio/metabolismo
3.
New Phytol ; 237(4): 1146-1153, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36073550

RESUMO

Transcriptome studies of Illumina RNA-Seq datasets of different Arabidopsis thaliana natural accessions and T-DNA mutants revealed the presence of two virus-like RNA sequences which showed the typical two-segmented genome characteristics of a comovirus. This comovirus did not induce any visible symptoms in infected A. thaliana plants cultivated under standard laboratory conditions. Hence it was named Arabidopsis latent virus 1 (ArLV1). Virus infectivity in A. thaliana plants was confirmed by quantitative reverse transcription polymerase chain reaction, transmission electron microscopy and mechanical inoculation. Arabidopsis latent virus 1 can also mechanically infect Nicotiana benthamiana, causing distinct mosaic symptoms. A bioinformatics investigation of A. thaliana RNA-Seq repositories, including nearly 6500 Sequence Read Archives (SRAs) in the NCBI SRA database, revealed the presence of ArLV1 in 25% of all archived natural A. thaliana accessions and in 8.5% of all analyzed SRAs. Arabidopsis latent virus 1 could also be detected in A. thaliana plants collected from the wild. Arabidopsis latent virus 1 is highly seed-transmissible with up to 40% incidence on the progeny derived from infected A. thaliana plants. This has probably led to a worldwide distribution in the model plant A. thaliana with as yet unknown effects on plant performance in a substantial number of studies.


Assuntos
Arabidopsis , Comovirus , Comovirus/genética , Arabidopsis/genética , RNA Viral/genética , Doenças das Plantas
4.
Methods Mol Biol ; 2480: 103-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35616860

RESUMO

Recent discoveries in the dynamics of genome replication and packaging in the plant virus Cowpea mosaic virus (CPMV) has led to the development of a novel method for specifically packaging an RNA molecule of choice into virus-like particles (VLPs) of CPMV. Thanks to modern gene synthesis and molecular cloning methods, the DNA sequence corresponding to an RNA sequence of interest can be cloned into a suitable expression plasmid for transient expression in plants. We describe here a method for ensuring that this RNA sequence will be packaged within VLPs of CPMV in plant cells by replication-dependent RNA packaging. This requires co-expression of the CPMV replication machinery alongside the CPMV coat protein precursor. These components are co-expressed in the leaves of the Nicotiana benthamiana plant and this co-expression results in the production of large quantities of VLPs that contain the RNA sequence of choice. These VLPs are easy to extract and purify from the plant tissue, and are stable for months in refrigerated conditions. These VLPs can then be used for a variety of different applications, such as RNA delivery or control reagents in RT-qPCR.


Assuntos
Comovirus , Vírus de Plantas , Comovirus/genética , Comovirus/metabolismo , Vírus de Plantas/genética , Plasmídeos , RNA/metabolismo , /genética
5.
Sci Rep ; 12(1): 681, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027575

RESUMO

Bean pod mottle virus (BPMV) is a destructive virus that causes serious economic losses in many countries every year, highlighting the importance of its effective detection. In this study, we developed a fast reverse transcription-cross-priming amplification (RT-CPA) coupled with lateral flow dipstick (LFD) diagnostic method for BPMV detection. The RT-CPA-LFD assay that targets the coat protein gene of BPMV was highly specific against diagnosing four other common viruses transmitted by soybean seeds, i.e., Southern bean mosaic virus (SBMV), Tomato ringspot virus (ToRSV), Arabis mosaic virus (ArMV), and Tobacco ringspot virus (TRSV). The sensitivities of the real-time fluorescent RT-CPA and the RT-CPA-LFD assay were at least 50 pg/µl and 500 pg/µl, respectively. Despite a compromise in the limit of detection of the RT-CPA method compared with TaqMan-MGB real-time RT-PCR, our results demonstrated a notably better performance in the detection of field samples of BPMV-infested soybean seeds. With the advantages of efficiency and convenience by visual determination, the RT-CPA-LFD assay presents a potential application for the rapid and accurate detection of BPMV in routine tests.


Assuntos
Comovirus/isolamento & purificação , Apresentação Cruzada , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/virologia , Transcrição Reversa , Comovirus/genética , Sensibilidade e Especificidade
6.
ACS Infect Dis ; 7(11): 3096-3110, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672530

RESUMO

The development of vaccines against coronaviruses has focused on the spike (S) protein, which is required for the recognition of host-cell receptors and thus elicits neutralizing antibodies. Targeting conserved epitopes on the S protein offers the potential for pan-beta-coronavirus vaccines that could prevent future pandemics. We displayed five B-cell epitopes, originally identified in the convalescent sera from recovered severe acute respiratory syndrome (SARS) patients, on the surface of the cowpea mosaic virus (CPMV) and evaluated these formulations as vaccines. Prime-boost immunization of mice with three of these candidate vaccines, CPMV-988, CPMV-1173, and CPMV-1209, elicited high antibody titers that neutralized the severe acute respiratory syndrome coronavirus (SARS-CoV) in vitro and showed an early Th1-biased profile (2-4 weeks) transitioning to a slightly Th2-biased profile just after the second boost (6 weeks). A pentavalent slow-release implant comprising all five peptides displayed on the CPMV elicited anti-S protein and epitope-specific antibody titers, albeit at a lower magnitude compared to the soluble formulations. While the CPMV remained intact when released from the PLGA implants, processing results in loss of RNA, which acts as an adjuvant. Loss of RNA may be a reason for the lower efficacy of the implants. Finally, although the three epitopes (988, 1173, and 1209) that were found to be neutralizing the SARS-CoV were 100% identical to the SARS-CoV-2, none of the vaccine candidates neutralized the SARS-CoV-2 in vitro suggesting differences in the natural epitope perhaps caused by conformational changes or the presence of N-linked glycans. While a cross-protective vaccine candidate was not developed, a multivalent SARS vaccine was developed. The technology discussed here is a versatile vaccination platform that can be pivoted toward other diseases and applications that are not limited to infectious diseases.


Assuntos
COVID-19 , Comovirus , Nanopartículas , Vacinas , Animais , COVID-19/terapia , Comovirus/genética , Epitopos de Linfócito B , Humanos , Imunização Passiva , Camundongos , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
7.
Viruses ; 13(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206842

RESUMO

In the context of climate change, elevated temperature is a major concern due to the impact on plant-pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant-virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.


Assuntos
Comovirus/genética , Comovirus/patogenicidade , Resistência à Doença/genética , Genótipo , Temperatura Alta , Phaseolus/virologia , Temperatura , Inativação Gênica , Vetores Genéticos , Fenótipo , Doenças das Plantas/virologia , Folhas de Planta/virologia , Viroses
8.
Biomacromolecules ; 22(8): 3613-3623, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314166

RESUMO

The plant virus cowpea mosaic virus (CPMV) is a natural nanocarrier that has been developed as a platform technology for the delivery of various payloads including peptide epitopes for vaccines, contrast agents for imaging, and drugs for therapy. Genetic fusion and chemical conjugations are the mainstay approaches to load the active ingredient to the exterior and/or interior of CPMV. However, these methods have limitations; genetic engineering is limited to biologics, and chemical alteration often requires multistep reactions with modification of both CPMV and the active ingredient. Either method can also result in particle instability. Therefore, to provide an alternate path toward CPMV functionalization, we report the isolation of peptides that specifically bind to CPMV, termed CPMV-binding peptides (CBP). We used a commercial M13 phage display 7-mer peptide library to pan for and select peptides that selectively bind to CPMV. Biopanning and characterization of lead candidates resulted in isolation of the motif "GWRVSEF/L" as the CPMV-specific motif with phenylalanine (F) at the seventh position being stronger than leucine (L). Specificity to CPMV was demonstrated, and cross-reactivity toward other plant viruses was not observed. To demonstrate cargo loading, GWRVSEF was tagged with biotin, fluorescein isothiocyanate (FITC), and a human epidermal growth factor receptor 2 (HER2)-specific targeting peptide ligand. Display of the active ingredient was confirmed, and utility of tagged and targeted CPMV in cell binding assays was demonstrated. The CBP functionalization strategy offers a new avenue for CPMV nanoparticle functionalization and should offer a versatile tool to add active ingredients that otherwise may be difficult to conjugate or display.


Assuntos
Comovirus , Nanopartículas , Comovirus/genética , Humanos , Peptídeos
9.
Virus Genes ; 57(2): 238-241, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33555455

RESUMO

In this study, the complete nucleotide sequence of a Brazilian isolate of cowpea severe mosaic virus (CPSMV) is presented for the first time. To date, the CPSMV-DG isolate, from the USA, is the only one with the complete known genome. High-throughput sequencing (Illumina HiSeq) and Sanger sequencing of the total RNA extract from a cowpea plant collected in Teresina city, Brazil, revealed the genome sequence of the CPSMV-Ter1 isolate. RNA-1 and RNA-2 are, respectively, 5921 and 3465 nucleotides (nt) long without the poly(A) tail, and show 77.91% and 76.08% nt sequence identity with CPSMV-DG, considered the type isolate of the species. The open reading frames (ORFs) were determined and the cleavage sites of the polyproteins were predicted. Although the two isolates show a similar genomic organization, there was a low percentage of sequence identity between Ter1 and DG. Furthermore, pairwise comparisons of a partial RNA-1 fragment between CPSMV-Ter1 and 11 CPSMV isolates from Brazil indicated 94.6 to 94.8% nt and 98.9% to 99.4% aa sequence identities.


Assuntos
Comovirus/genética , Genoma Viral , Brasil , Comovirus/isolamento & purificação , RNA Viral , Análise de Sequência de RNA , Vigna/virologia , Sequenciamento Completo do Genoma
10.
Arch Virol ; 165(6): 1505-1509, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32277282

RESUMO

The complete genome sequence of a novel comovirus identified in Guanajuato, Mexico, in a common bean plant (Phaseolus vulgaris L.) coinfected with Phaseolus vulgaris alphaendornavirus 1 (PvEV-1) and Phaseolus vulgaris alphaendornavirus 2 (PvEV-2) is presented. According to the current ICTV taxonomic criteria, this comovirus corresponds to a new species, and the name "Phaseolus vulgaris severe mosaic virus" (PvSMV) is proposed for this virus based on the observed symptoms of "severe mosaic" syndrome caused by comoviruses in common bean. PvSMV is closely related to bean pod mosaic virus (BPMV), and its genome consists of two polyadenylated RNAs. RNA-1 (GenBank accession number MN837498) is 5969 nucleotides (nt) long and encodes a single polyprotein of 1856 amino acids (aa), with an estimated molecular weight (MW) of 210 kDa, that contains putative proteins responsible for viral replication and proteolytic processing. RNA-2 (GenBank accession number MN837499) is 3762 nt long and encodes a single polyprotein of 1024 aa, with an estimated MW of 114 kDa, that contains putative movement and coat proteins. Cleavage sites were predicted based on similarities in size and homology to aa sequences of other comoviruses available in the GenBank database. Symptoms associated with PvSMV include mosaic, local necrotic lesions, and apical necrosis. This is the first report of a comovirus infecting common bean in Mexico.


Assuntos
Comovirus/genética , Genoma Viral , Phaseolus/virologia , Doenças das Plantas/virologia , Sequência de Aminoácidos , Comovirus/classificação , Comovirus/isolamento & purificação , México , Filogenia , RNA Viral/genética , Proteínas Virais/genética , Sequenciamento Completo do Genoma
11.
Mol Plant Pathol ; 21(6): 794-807, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196911

RESUMO

Asian soybean rust (ASR), caused by the obligate fungal pathogen Phakopsora pachyrhizi, often leads to significant yield losses and can only be managed through fungicide applications currently. In the present study, eight urediniospore germination or appressorium formation induced P. pachyrhizi genes were investigated for their feasibility to suppress ASR through a bean pod mottle virus (BPMV)-based host-induced gene silencing (HIGS) strategy. Soybean plants expressing three of these modified BPMV vectors suppressed the expression of their corresponding target gene by 45%-80%, fungal biomass accumulation by 58%-80%, and significantly reduced ASR symptom development in soybean leaves after the plants were inoculated with P. pachyrhizi, demonstrating that HIGS can be used to manage ASR. In addition, when the in vitro synthesized double-stranded RNAs (dsRNAs) for three of the genes encoding an acetyl-CoA acyltransferase, a 40S ribosomal protein S16, and glycine cleavage system H protein were sprayed directly onto detached soybean leaves prior to P. pachyrhizi inoculation, they also resulted in an average of over 73% reduction of pustule numbers and 75% reduction in P. pachyrhizi biomass accumulation on the detached leaves compared to the controls. To the best of our knowledge, this is the first report of suppressing P. pachyrhizi infection in soybean through both HIGS and spray-induced gene silencing. It was demonstrated that either HIGS constructs targeting P. pachyrhizi genes or direct dsRNA spray application could be an effective strategy for reducing ASR development on soybean.


Assuntos
Comovirus/genética , Phakopsora pachyrhizi/fisiologia , Doenças das Plantas/prevenção & controle , RNA de Cadeia Dupla/genética , Inativação Gênica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , /microbiologia
12.
Virus Genes ; 55(6): 854-858, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605266

RESUMO

A virus isolate from tabasco pepper (Capsicum frutescens) has been reported as a strain of the comovirus Andean potato mottle virus (APMoV). Using the replicative intermediate viral dsRNA, the pepper virus strain was sequenced by Illumina MiSeq. The viral genome was de novo assembled resulting in two RNAs with lengths of 6028 and 3646 nt. Nucleotide sequence analysis indicated that they corresponded to the RNA-1 and RNA-2 of a novel comovirus which we tentatively named pepper mild mosaic virus (PepMMV). Predictions of the open reading frame (ORF) of RNA-1 resulted in a single ORF of 5871 nt with five cistrons typical of comoviruses, cofactor proteinase, helicase, viral protein genome-linked, 3C-like proteinase (Pro), and RNA-dependent RNA polymerase (RdRP). Similarly, sequence analysis of RNA-2 resulted in a single ORF of 3009 nt with two cistrons typical of comoviruses: movement protein and coat protein (large coat protein and small coat proteins). In pairwise amino acid sequence alignments using the Pro-Pol protein, PepMMV shared the closest identities with broad bean true mosaic virus and cowpea mosaic virus, 56% and 53.9% respectively. In contrast, in alignments of the amino acid sequence of the coat protein (small and large coat proteins) PepMMV shared the closest identities to APMoV and red clover mottle virus, 54% and 40.9% respectively. A phylogenetic tree constructed using the conserved domains for the Pro-Pol from all members of the family Secoviridae confirmed the comovirus nature of the virus. Phylogenetic and sequence analyses supports proposing PepMMV as a new species of the genus Comovirus.


Assuntos
Comovirus/genética , Genoma Viral/genética , Sequenciamento Completo do Genoma , Sequência de Aminoácidos/genética , Capsicum/genética , Capsicum/virologia , Anotação de Sequência Molecular , Vírus do Mosaico/genética , Fases de Leitura Aberta/genética , Filogenia , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
13.
Virus Res ; 274: 197766, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560966

RESUMO

Squash mosaic virus (SqMV), a member of the species Squash mosaic virus in the genus Comovirus (family Comoviridae), is an important seed-borne virus that causes serious economic losses in cucurbit crops. Here, we constructed infectious cDNA clones of SqMV genomic RNAs (RNA1 and RNA2) under the control of the cauliflower mosaic virus (CaMV) 35S promoter by Gibson assembly. The infectious cDNA clones of SqMV could infect zucchini squash (Cucurbita pepo) plants systemically by agrobacterium-mediated inoculation. The virus progeny from the infectious clones showed no difference from the wild type in terms of pathogenicity and symptom induction. It could be mechanically transmitted to zucchini squash (Cucurbita pepo), pumpkin (Cucurbita moschata), cucumber (Cucumis sativus), and muskmelon (Cucumis melo) but not watermelon (Citrullus lanatus) or Nicotiana benthamiana. This is the first report of construction of a SqMV infection clone and will facilitate the investigation of viral pathogenesis and host interactions.


Assuntos
Agrobacterium/genética , Comovirus/fisiologia , Comovirus/patogenicidade , DNA Complementar/genética , Caulimovirus/genética , Clonagem Molecular , Comovirus/genética , Comovirus/isolamento & purificação , Cucurbitaceae/virologia , DNA Complementar/isolamento & purificação , Vírus Delta da Hepatite/genética , Especificidade de Hospedeiro , Doenças das Plantas/virologia , Folhas de Planta/virologia , RNA Viral/genética , RNA Viral/metabolismo , Transformação Genética , Virulência , Replicação Viral
14.
J Gen Virol ; 100(7): 1165-1170, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31169482

RESUMO

The icosahedral capsid of cowpea mosaic virus is formed by 60 copies of the large (L) and small (S) coat protein subunits. The 24-amino-acid C-terminal peptide of the S coat protein can undergo proteolytic cleavage without affecting particle stability or infectivity. Mutagenic studies have shown that this sequence is involved in particle assembly, virus movement, RNA encapsidation and suppression of gene silencing. However, it is unclear how these processes are related, and which part(s) of the sequence are involved in each process. Here, we have analysed the effect of mutations in the C-terminal region of the S protein on the assembly of empty virus-like particles and on the systemic movement of infectious virus. The results confirmed the importance of positively charged amino acids adjacent to the cleavage site for particle assembly and revealed that the C-terminal 11 amino acids are important for efficient systemic movement of the virus.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Comovirus/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Comovirus/química , Comovirus/genética , Mutação , Doenças das Plantas/virologia , Montagem de Vírus
15.
Nano Lett ; 19(3): 2099-2105, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30801195

RESUMO

In situ cancer vaccination that uses immune stimulating agents is revolutionizing the way that cancer is treated. In this realm, viruses and noninfectious virus-like particles have gained significant traction in reprogramming the immune system to recognize and eliminate malignancies. Recently, cowpea mosaic virus-like particles (VLPs) have shown exceptional promise in their ability to fight a variety of cancers. However, the current methods used to produce CPMV VLPs rely on agroinfiltration in plants. These protocols remain complicated and labor intensive and have the potential to introduce unwanted immunostimulatory agents, like lipopolysaccharides. This Letter describes a simple "post-processing" method to remove RNA from wild-type CPMV, while retaining the structure and function of the capsid. Lyophilization was able to eject encapsulated RNA to form lyo-eCPMV and, when purified, eliminated nearly all traces of encapsulated RNA. Lyo-eCPMV was characterized by cryo-electron microscopy single particle reconstruction to confirm the structural integrity of the viral capsid. Finally, lyo-eCPMV showed  equivalent anticancer efficacy as eCPMV, produced by agroinfiltration, when using an invasive melanoma model. These results describe a straightforward method to prepare CPMV VLPs from infectious virions.


Assuntos
Vacinas Anticâncer/química , Comovirus/química , Melanoma/tratamento farmacológico , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Comovirus/genética , Microscopia Crioeletrônica , Liofilização , Humanos , Melanoma/imunologia , Plantas/virologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vírion/química , Vírion/genética
16.
Annu Rev Virol ; 5(1): 1-32, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30265631

RESUMO

My long career in virology has been a continuous learning exercise with a very modest start. Virology and related pertinent fields have changed significantly during my lifetime. Sometimes I wish that my career had just started and I could apply all available and state of the art technology to solving problems and explaining intriguing observations. I was always convinced that visiting growers' fields is essential for researchers to get firsthand observations and knowledge of virus disease problems under field conditions. I never thought I would pursue so many avenues of research, yet it is true that research never ends. I enjoyed dissecting strain diversity in a very important plant pathogen like bean pod mottle virus (BPMV) and using BPMV-based vectors to address fundamental virology questions. Lastly, solving the enigma of the transmissible disease of Helminthosporium victoriae and attempting to gain an understanding of the molecular basis of disease in a plant pathogenic fungus were thrilling.


Assuntos
Comovirus/genética , Comovirus/patogenicidade , Helminthosporium/crescimento & desenvolvimento , Helminthosporium/patogenicidade , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , História do Século XX , História do Século XXI
17.
Methods Mol Biol ; 1776: 337-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869253

RESUMO

Plant virus capsids are attractive entities for nanotechnological applications because of their variation in shape and natural assembly ability. This chapter describes the production and modification of three differently shaped plant virus capsids for silica mineralization purposes. The chosen plant viruses exhibit either an icosahedral (cowpea mosaic virus, CPMV), or a flexuous rod-like structure (potato virus X, PVX), or a rigid rod-like shape (tobacco mosaic virus, TMV), and are well-known and frequently used plant viruses for biotechnological applications. We describe the production (including genetic or chemical modification) and purification of the plant viruses or of empty virus-like particles in the case of CPMV, as well as the characterization of these harvested templates. The mineralization procedures and differences in the protocols specific to the distinct viruses are described, and the analyses of the mineralization results are explained.


Assuntos
Comovirus/genética , Nanotecnologia/métodos , Potexvirus/genética , Vírus do Mosaico do Tabaco/genética , Capsídeo/química , Comovirus/química , Nanopartículas/química , Potexvirus/química , Dióxido de Silício/química , Vírus do Mosaico do Tabaco/química
18.
Methods Mol Biol ; 1776: 533-552, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869264

RESUMO

Metallic nanoscale 3D architectures concentrate electromagnetic energy at precise spatial locations to enable sensing and photocatalysis applications. We have developed solution-based methods to reproducibly fabricate 3D gold nanostructures useful as efficient surface-enhanced Raman spectroscopy (SERS) biosensors. Virus capsids were recruited as templates to assemble gold nanoparticles on their surfaces at well-defined locations to prepare the nanoscale 3D structures. Cowpea mosaic virus (CPMV) and its variants were selected as specific templates due to their high symmetry, scalability, and stability, which have proven useful in materials science applications. While the methods described herein were optimized for the CPMV capsids, they also provide a useful starting point for researchers who are working toward the nanoassembly of metal nanoparticles on other protein scaffolds.


Assuntos
Técnicas Biossensoriais/métodos , Comovirus/genética , Nanopartículas Metálicas/química , Vírion/genética , Capsídeo/química , Comovirus/química , Ouro/química , Nanoestruturas/química , Análise Espectral Raman , Vírion/química
19.
Methods Mol Biol ; 1776: 609-627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869269

RESUMO

Stem cells can interact and respond to the extracellular nanoscale environment. Viral nanoparticles have been utilized as building blocks to control cell growth and differentiation. By integrating stem cell research and virus nanoparticle chemistry together, a systematic analysis of the effects of nanotopography on stem cell differentiation can be accomplished. The fabrication of thin films of the viral nanoparticles is particularly valuable for such studies. Here, we describe two methods to fabricate plant virus-based thin films and procedures to study the osteogenic differentiation of mesenchymal stem cells on plant virus-based substrates. The method makes use of wild-type tobacco mosaic virus (wt-TMV), RGD-modified TMV (TMV-RGD), turnip yellow mosaic virus (TYMV), cowpea mosaic virus (CPMV), turnip vein clearing virus (TVCV), and potato virus X (PVX) for development of bone tissue engineering biomaterials.


Assuntos
Células-Tronco Mesenquimais/química , Nanopartículas/química , Osteogênese/genética , Engenharia Tecidual/métodos , Adesão Celular/genética , Diferenciação Celular/genética , Comovirus/química , Comovirus/genética , Potexvirus/química , Potexvirus/genética , Vírus do Mosaico do Tabaco/química , Vírus do Mosaico do Tabaco/genética , Tymovirus/química , Tymovirus/genética
20.
Methods Mol Biol ; 1654: 311-319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28986801

RESUMO

Plant viral vectors have been developed to facilitate gene function studies especially in plant species not amenable to traditional mutational or transgenic modifications. In the Fabaceae plant family, the most widely used viral vector is derived from Bean pod mottle virus (BPMV). Originally developed for overexpression of foreign proteins and VIGS studies in soybean, we adapted the BPMV-derived vector for use in other legume species such as Phaseolus vulgaris and Pisum sativum. Here, we describe a protocol for efficient protein expression and virus-induced gene silencing (VIGS) in Pisum sativum leaves and roots using the "one-step" Bean pod mottle virus (BPMV) viral vector.


Assuntos
Comovirus/genética , Inativação Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Vetores Genéticos/genética , /genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...